Modeling the vertical soil organic matter profile using Bayesian parameter estimation
نویسندگان
چکیده
منابع مشابه
Organic Matter Modeling at the Landscape Scale Based on Multitemporal Soil Pattern Analysis Using RapidEye Data
This study proposes the development of a landscape-scale multitemporal soil pattern analysis (MSPA) method for organic matter (OM) estimation using RapidEye time series data analysis and GIS spatial data modeling, which is based on the methodology of Blasch et al. The results demonstrate (i) the potential of MSPA to predict OM for single fields and field composites with varying geomorphological...
متن کاملParameter Estimation and Filtering Using Sparse Modeling
Sparsity-based estimation techniques deal with the problem of retrieving a data vector from an undercomplete set of linear observations, when the data vector is known to have few nonzero elements with unknown positions. It is also known as the atomic decomposition problem, and has been carefully studied in the field of compressed sensing. Recent findings have led to a method called basis pursui...
متن کاملBayesian Approach to Parameter Estimation
In many problems, before any observations from f(x|θ) are available, the experimenter or statistician will be able to summarize his previous information and knowledge about where in Θ the value of θ is likely to lie by constructing a probability distribution for θ on the set Θ. In other words, before any experimental data have been collected or observed, the experimenter’s past experience and k...
متن کاملBayesian Methods of Parameter Estimation
The frequentest approach is the classical approach to parameter estimation. It assumes that there is an unknown but objectively fixed parameter θ [3]. It chooses the value of θ which maximizes the likelihood of observed data [4], in other words, making the available data as likely as possible. A common example is the maximum likelihood estimator (MLE). The frequentest approach is statistically ...
متن کاملColocalization Estimation Using Graphical Modeling and Variational Bayesian Expectation Maximization: Towards a Parameter-Free Approach
In microscopy imaging, colocalization between two biological entities (e.g., protein-protein or protein-cell) refers to the (stochastic) dependencies between the spatial locations of the two entities in the biological specimen. Measuring colocalization between two entities relies on fluorescence imaging of the specimen using two fluorescent chemicals, each of which indicates the presence/absenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biogeosciences
سال: 2013
ISSN: 1726-4189
DOI: 10.5194/bg-10-399-2013